人工智慧在電腦科學的領域不是一個新主題,已經存在很長的時間.其目的是希望電腦可以做出接近人腦一樣的決策,甚至希望比人腦更好.從以前到現在曾試過了數種不同的方式,從 90 年代開始,機器學習成為了人工智慧裡主流的方式,革新了我們處理數據分析、自動化和決策的方式。這文章將討論機器學習的基礎概念,淺談其不同類型、訓練模型等.
機器學習是近二三十年來人工智慧裡流行的方法,專注於開發能夠基於數據的了解並做出預測或決策的演算法。它涉及創建模型和使用模型,這些模型可以找到模式、做出決策,並且隨著時間的推移提高其準確性。機器學習的廣泛分類可以分為 3 大類:監督學習 (supervised learning), 非監督學習 (non-supervised learning) 和半監督學習 (semi-supervised learning)。這一區分主要基於用在開發模型的訓練數據是否包含要預測的結果的答案。
在監督學習中,模型在標籤化的數據集上訓練,也就是說每一筆訓練資料都已經附上了正確答案,也就是標籤,這也代表了每一筆訓練資料都有正確輸入和輸出配對,通常來說,這是基於人類的決策來決定是否正確,所以早期的機器學習專案都需要依賴大量人力的介入來為每個數據給予正確答案,也就是標籤化的動作。模型學習從輸入數據中預測輸出答案,並且可以根據已知結果來衡量其性能。舉個例子,你要做一個能自動辦別貓或狗的程式,你收集了許多有關狗和貓的照片,假設超過了一萬張各式各樣的貓狗照片.並且每一個照片你都給出了正確答案,如第一張是貓,第二張是狗,第三張是貓等等.機器學習裡最重要的任務就是為你的程式產生出一個數學公式 (function),公式的輸入數據就是照片, 公式的輸出結果是答案,貓或狗. 所以,機器學習就是要產生這樣的 數學公式給你的程式來使用. 我們先跳過製作數學公式的細節過程,這個數學公式的行為是從現有的一萬張照片裡 “學習” 而來的,因此,你可以想成用過去的照片,找出一個模式,然後去預測未來的照片. 因此,只要訓練時輸入的照片別太少,在預測的效果就不會太差. 預測準確率也是評估該數學公式表現好壞的重要指標,也常是用來衝量該數學公式的效果好壞. 所以,機器學習裡講的模型就是在訓練過程後產生的數學公式.因為每一張照片都搭配著正確答案,所以這種方式稱為監督學習,也就是說,每個訓練資料的輸入和輸出的關係都是由人類預先定義好.如果每張照片並沒有搭配著正確答案,這種方式則稱為非監督學習。如果訓練的數據裡有部份有標籤,而部份沒有,則這種方式稱為半監督學習。
既便你完全沒接觸過任何的機器學習演算法,單純地從上述的說明加上你對基本演算法的認識,你一定能推斷出監督學習和非監督學習是兩種完全不同的方式.監督學習的訓練資料已經有答案,所以你需要的演算法是在輸入 (照片) 和輸出 (貓狗) 之間找出關係,而非監督學習沒有答案,所以比較適合把 “類似” 的輸入聚合在一起,所謂的 "類似" 可依照功能來區別,讓人們可以很直覺地知道為何這些資料會被放一起.舉個例子,產品推薦功能,在現在許多電子商務或是影音平台網站上都會常見到這樣的功能,網站裡有許多的商品和影片,一開始沒人會知道你想買些什麼.一旦資料越來越多後,許多客戶隨著時間會建立出許多訂單,從訂單的產品裡可以整理出一套 “類似” 的規則.舉例,常買烤雞的客戶也常買牛排,常看搞笑影片的客戶比較少看知識型的影片,這些 “類似” 規則的建立就是非監督學習的成品.
從上面的說明你可以看到不論是那一種方式的機器學習方法都需要足夠多的資料,建立出來的模型也都是依照過去資料的累積而建立出來的,至少這個模型能不能拿來用在未來的預測上,這實在很難保證.舉例,貓狗照片的辦識應該沒太大問題,畢竟十年後二十年後,貓狗的長相都還是會一樣 (除非他們都成了變種貓狗了),但同一家購物商店的商品推薦功能在十年後二十年後還能用嗎? 這沒人敢保證,畢竟商品推薦的模型是用過去數年的客戶訂單資料所建立出來的,裡面都是這些客戶的行為,如果整個社區的住戶全部都換了,你覺得你還能拿一樣的模型來用嗎 ? 答案可能可以,也可能不行.
在監督學習裡所建立出來的模型基本上都是依照你給的新輸入來算出預測的答案. 一般來說,會有兩種不同的情況,要看答案本身之間的關係.舉例,以貓狗照片辦識來說,輸入的數據是貓或狗或是其他動物的照片,模型的輸出是貓或狗或其他,答案本身是一種固定在三個值的變數,我們把這種答案稱為 “分類型” (Classification) .舉另外一個例子,某公司下個月的銷售量預測,輸入的數據是每個月的銷售量,季節因素,經濟好壞等數據,而模型的輸出是一個預測銷售量數字,這些答案並不是固定在幾個固定值的變數,而且會隨著時間和許多其他不同因素變動時而變動的數字,我們把這種答案稱為 “回歸型” (Regression).不同答案類型所需要的演算法或統計法也是不同的.同理也能用在非監督學習裡,答案也可分為 “群組型” (Cluster) 和 “資料探勘型” (Data mining).其實,不論是那一種方法,都是在從你給的輸入數據裡依照你要的答案找出一個數學公式。我們要把輸入資料能 “座標化”,然後數學公式就是在這座標系統裡一個 n 維度的線或面,透過把輸入數據傳給該數學公式後就能推導出答案.
我們來用另一個例子, 假設我們得到十個病人的身高體重資料,而我們要的答案是從這些病人的資料來學習 (預測) 某一個人會不會有高血壓.假設,我們知道每一個病人有沒有高血壓,也就是說我們有答案,我們將身高體重座標化,體重是 x 軸,身高是 y 軸,呈現如下,
因為我們知道那些病人有高血壓 (紅色圈標記) ,因此,我們很容易能找一個能區分有高血壓和沒高血壓的直線或曲線. (線條的選擇或建立就是機器學習課本裡的重點.)
以上是透過 SVM 演算法所製作出來的直線,它就是一個數學公式.因此,當你有新的病人數據進入到這個直線時,我們就能知道這新病人是否有高血壓,因為只要看新輸入數據的座標是在直線的左邊或右邊就能得到答案,左邊沒有高血壓,右邊則有.以上只是一個單純的例子,真實情況下,病人的輸入參數絕對不會只有身高和體重,有意義且足夠多的參數才能幫助產生更好的預測.現在你知道機器學習模型就是在座標系統裡的一條線或是一個面.問題越複雜時,我們需要提供的參數將越多,也代表座標系統的維度越高.這些高維度的座標系統運算在數學上用矩陣來表示,方便閱讀,也方便寫程式,因此在執行機器學習專案時才會需要擅長矩陣運算的 GPU 來執行座標系統裡相關的計算.
另一種情況是我們不知道有那些病人有高血壓,這表示我們要採用非監督學習的方式. 例如,採用 K-means 並將 cluster 數量設定為 2,會得到以下的圖型,
K-means 演算法把十個病人分成兩群組, 5,6,1,7,3是一組, 9,2,8,10,4 是一種. 可想而知,這是一個失敗的數學公式,因為和真實答案相比有很高的錯誤率.在這例子裡會有這種情況是很正常的,畢竟資料太少,只有十個人,資料維度也不夠,只有身高和體重,所以很難在這麼少的數據下得到些結論. 從這個簡單的例子也可以知道有正確答案的監督學習是處在多麼有利的位置.所以,在建立機器學習模型前的資料數據整理和答案標記是對模型的建立和準確率有很大的幫助.
在監督學習和非監督學習之間存在一個灰色區域,稱為半監督學習,也就是指有部份的輸入數據有了正確答案,其中模型在部分標籤化的數據上訓練。當獲取數據的標籤昂貴或耗時時,這種方法很有用。舉個例子,當你有一萬張的動物照片時,你要建立一個機器學習模型能辦識出照片裡是那一種動物,為了讓模型得到最好的辦識結果,你希望採用監督學習方式進行,也就是要將正確答案準備好.但你可以沒有足夠的時間金錢或是其他原因導致無法將一萬張照片標示好正確答案,可能只有三千張照片能完成正確答案標示,另外七千張照片沒有正確答案.此時,可以用一個簡單的方法,將三千張有正確答案標示的照片先進行模型訓練,訓練後得到的模型用於七千張沒正確答案照片的預測,然後再將七千張照片的預測視為正確答案和三千張已有正確答案的照片再重新訓練出一個模型,半監督學習的方法有好幾種,這只是其中一種簡單好懂的.如果這個程過是循序漸進的,則模型還可以適時地改變,這樣就能漸漸地得到更好的模型,這也是所謂的增強學習 (reinforcement learning)。從這個方法延伸下去還可以有許多的理論和應用產生.
機器學習是一個動態且快速發展的領域,具有廣泛的應用範圍。理解不同類型的機器學習、如何訓練模型以及最新進展對於任何希望利用這項強大技術的人來說都至關重要。隨著機器學習繼續融入各個行業,它對社會的影響勢必增長,使其成為一個令人興奮的研究和創新領域。